COMPUTER-AIDED SYSTEM
FOR
ASSESS DYSLEXIA AMONG CHILDREN

WEK060051 MERVIN SHO HUAN CHUN

Under the Supervision of
Assoc. Prof. Dr. Ow Siew Hock

This project is submitted to the Faculty of Computer Science and Information Technology, University of Malaya, in partial fulfillment of the requirement of the Bachelor of Computer Science
ACKNOWLEDGEMENTS

We would like to express our gratitude and thank our supervisor, Assoc. Prof. Dr. Ow Siew Hock, for her invaluable support, and guidance throughout this project. Her continuous guidance enabled us to complete this project a successful one.

We are also grateful to Puan Sariah Amirin, who is the President of Persatuan Dyslexia Malaysia, for allowing us to interview her to gather the requirements. Her willingness to spend her time to help and assist us in our requirement data gathering is deeply appreciated. She also answered all of our questions with patience and without hesitation.

We would like to thank Miss Lily, who is the coordinator of Subang Jaya Dyslexia Center, for taking her time to help us do data gathering to the dyslexic children and evaluating our system. Without her help, our system could not improve much.

Without the dyslexic children of Titiwangsa and Subang Jaya Dyslexia Center as well, our system could not be a successful one. With their time to take assessment test on our system, we could notice the flaws in our system and make improvement on it. We would like to thank the dyslexic children for their time and patience in taking the assessment test, twice, to complete each and every section.

Last but not least, we would like to thank all of our friends too who help evaluating our system and give feedbacks for us to improve on the system.
This project is focus in developing Dyslexia Assessment System (DAS). It consists of three levels; Beginner, Intermediate and Advance level. The purpose of this system is to assess dyslexic child in the dyslexia center before the child can be enrolled into the class and after the child attended the course. This system is developed also to reduce the time taken by the teachers to assess the child manually and paper required to do the assessment. Each level has different sections with different difficulties. There are three users for each of the level: dyslexic child, admin (teacher), and parent. Each of the level also has user module and admin module. User module is where user to take assessment and view results while admin module is where admin performs editing, deleting and adding to all of the sections. Currently, the system only supports Malay language. In the near future, the system will be improved to support more languages.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1 INTRODUCTION

1.1 Project Definition
1.2 Project Team
1.3 Problem Statement
1.4 Project Objective
1.5 Development Methodology
1.6 Project Scope
1.7 Project Outcome
1.8 Project Schedule
1.9 Summary

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction
2.2 Overview of Dyslexia
 2.2.1 Definition of Dyslexia
 2.2.2 Symptoms
 2.2.3 Subtypes of developmental dyslexia
 2.2.3.1 Surface Dyslexia
2.2.3.2 Phonological Dyslexia 8

2.2.3.3 Double Deficit Dyslexia 9

2.3 Existing Method in Detecting Dyslexia Review 9

2.3.1 A Modified Maximum Correlation Modeling Method for fMRI Brain Mapping; Application for Detecting Dyslexia 9

2.3.2 Development and validation of a reading-related assessment battery in Malay for the purpose of dyslexia assessment 10

2.4 Tools Review 13

2.4.1 Programming Language 13

2.4.1.1 Visual Basic 13

2.4.2 Databases 14

2.4.2.1 Microsoft Access 14

2.4.2.2 Microsoft SQL Server 15

2.4.3 Multimedia Tools 16

2.4.3.1 Adobe Flash 16

2.4.3.2 Adobe Photoshop 18

2.5 Existing System Review 19

2.5.1 A CAD System for Early Diagnosis of Dyslexic Brains 19

2.5.2 System and Method for Dyslexia Detection by Analyzing Spoken and Written Words 19

2.5.3 MyAddyxia 20

2.5.4 Adaptive Reading Assistance for the Inclusion of Students with Dyslexia: The AGENT-DYSL approach 21

2.6 Related Work 23

2.7 Summary 23
CHAPTER 3 METHODOLOGY

3.1 Introduction 25

3.2 Spiral Model and Prototyping Model 26

3.3 Advantages in using the Spiral Model and Prototyping Model 27

3.4 Research from Internet 28

3.5 Research from Books 28

3.6 Research from Current Market 28

3.7 Tools Selection 29
 3.7.1 Why Use Visual Basic .NET 29
 3.7.2 Why Use Microsoft SQL Server 2005 30
 3.7.3 Why Use Adobe Photoshop 30

CHAPTER 4 SYSTEM ANALYSIS 32

4.1 Functional Requirement 32
 4.1.1 Use Case Diagram 32

4.2 Non-Functional Requirement 37
 4.2.1 Usability 38
 4.2.2 Scalability 38
 4.2.3 Accessibility 39
 4.2.4 Correctness 39
 4.2.5 Understandability 39

4.3 Software Requirement 40
 4.3.1 Developer Software Requirement 40
 4.3.2 User Software Requirement 40
4.4 Hardware Requirement

4.4.1 Developer Hardware Requirement

4.4.2 User Hardware Requirement

CHAPTER 5 SYSTEM DESIGN

5.1 System Architectural Design

5.1.1 Class Diagram Advance Level

5.1.2 State Diagram

5.1.3 Sequence Diagram

5.1.4 Activity Diagram

5.2 Process Model

5.3 Database Design

5.3.1 Physical Database Design

5.3.1.1 Integrated Tables

5.3.1.2 Advanced Tables

5.3.2 Logical Database Design

5.4 User Interface Design

CHAPTER 6 SYSTEM DEVELOPMENT

6.1 Development Environment

6.1.1 Development Tools and Technologies Used

6.1.2 Programming Tools

6.2 Development Process

6.2.1 Programs Naming

6.2.2 Design the Programs
6.2.3 Coding Styles
6.2.4 Test and Debugging

6.3 Programming Techniques
6.3.1 Modular Programming
6.3.2 Module Integration

CHAPTER 7 SYSTEM TESTING

7.1 Testing Techniques
7.1.1 Module Testing
7.1.2 Integration Testing
7.1.3 System Testing
7.1.4 User Acceptance Testing (UAT)

7.2 Test Cases and Test Data
7.2.1 Integrated Test Cases
7.2.1.1 Login User
7.2.1.2 Register User
7.2.1.3 Login Admin
7.2.1.4 Register Admin

7.2.2 Advance Level Test Cases
7.2.2.1 User answer section A
7.2.2.2 User answer section B
7.2.2.3 User answer section C
7.2.2.4 User answer section D
7.2.2.5 User answer section E
CHAPTER 8 DISCUSSION AND CONCLUSION

8.1 Problems Encountered and Solutions

8.1.1 Use of New Development Tools

8.1.2 Lack of Programming Skills

8.1.3 Poor Programming Techniques

8.2 System Evaluation

8.2.1 System Strengths

8.2.2 System Weaknesses and Limitations

8.2.3 Future Enhancements and Expansions

8.3 System Applications

8.3.1 Usefulness of the System

8.3.2 Benefits Gained

8.4 Conclusions

8.4.1 Knowledge and Experience Gained

8.4.2 Communications and Presentation Skills

8.4.3 Project Outcome
8.4.4 Commercial Value

REFERENCES 133

APPENDIX A ANALYSIS RESULT 136

APPENDIX B SAMPLE SOURCE CODES 153

APPENDIX C USER MANUAL 156
LIST OF FIGURES

Figure 1.8 Project Scheduling Gantt Chart 4
Figure 2.3.2 Conceptual Framework of dyslexia assessment in Malay 11
Figure 2.5.2 Structures of System and Method for Dyslexia Detection by Analyzing Spoken and Written Words 20
Figure 2.5.3 MyAddyxia Result Example 21
Figure 2.5.4 Architecture of Agent-DYSL 22
Figure 3.1 Comparison of software development methodologies 25
Figure 3.2 Boehm spiral model, 1988 26
Figure 4.1.1 Use Case Diagram of DAS 33
Figure 5.1 Front-end and Back-endArchitecture of DAS 42
Figure 5.1.1.1 Class Diagram of DAS 43
Figure 5.1.1.2 Test Class Diagram Taxonomy of DAS 44
Figure 5.1.1.3 Result Class Diagram Taxonomy of DAS 45
Figure 5.1.2.1 Login State Diagram 46
Figure 5.1.2.2 Register State Diagram 47
Figure 5.1.2.3 Answer Question State Diagram 48
Figure 5.1.3.1 User Log in Sequence Diagram 50
Figure 5.1.3.2 Admin Log in Sequence Diagram 51
Figure 5.1.3.3 Register User in Sequence Diagram 52
Figure 5.1.3.4 Answer Parent Assessment in Sequence Diagram 53
Figure 5.1.3.5 Admin Edit in Sequence Diagram 54
Figure 5.1.3.6 Admin Delete in Sequence Diagram
Figure 5.1.3.7 Admin Add in Sequence Diagram
Figure 5.1.3.8 User View Report in Sequence Diagram
Figure 5.1.3.9 User Answer Test in Sequence Diagram
Figure 5.1.3.10 Admin View Report in Sequence Diagram
Figure 5.1.3.11 Admin Give Remark in Sequence Diagram
Figure 5.1.4.1 Change Password in Activity Diagram
Figure 5.1.4.2 Evaluation in Activity Diagram
Figure 5.1.4.3 Play sound in Activity Diagram
Figure 5.1.4.4 Print Report in Activity Diagram
Figure 5.1.4.5 Register in Activity Diagram
Figure 5.1.4.6 View Report in Activity Diagram
Figure 5.2.1 DAS DFD Level 0
Figure 5.2.2 DAS DFD Level 1 for Student
Figure 5.2.3 DAS DFD Level 1 for Admin
Figure 5.3.2.1 Logical Database Design of Advance Level
Figure 5.4.1 Interface Design for Advance Level
Figure 6.2.4 Testing and debugging in VB.NET
LIST OF TABLES

Table 1.2 Project Team Work Breakdown 1
Table 4.3.1 Software Requirement to develop the system 40
Table 5.1.3 Elements of Sequence Diagrams 49
Table 5.1.4 Elements of Activity Diagrams 61
Table 5.2 The Gane and Sarson notation 67
Table 5.3.1.1.1 Table of Users 71
Table 5.3.1.1.2 Table of Admin 72
Table 5.3.1.1.3 Table of Parent Assessment Answer 72
Table 5.3.1.1.4 Table of Parent Assessment Question 73
Table 5.3.1.1.5 Table of Parent Assessment Title 73
Table 5.3.1.2.1 Table of Tick and Cross 73
Table 5.3.1.2.2 Table of Section A 74
Table 5.3.1.2.3 Table of Section A Essay 74
Table 5.3.1.2.4 Table of Section A Question 74
Table 5.3.1.2.5 Table of Section A Pre Result Essay’s Timer 75
Table 5.3.1.2.6 Table of Section A Pre Result Essay 75
Table 5.3.1.2.7 Table of Section A Pre Result Question 76
Table 5.3.1.2.8 Table of Section A Post Result Essay’s Timer 76
Table 5.3.1.2.9 Table of Section A Post Result Essay 76
Table 5.3.1.2.10 Table of Section A Post Result Question 77
Table 5.3.1.2.11 Table of Section B 77
Table 5.3.1.2.12 Table of Section B Word 78
Table 5.3.1.2.13 Table of Section B Pre Result 78
Table 5.3.1.2.14 Table of Section B Post Result 78
Table 5.3.1.2.15 Table of Section C 79
Table 5.3.1.2.16 Table of Section C Word 79
Table 5.3.1.2.17 Table of Section C Pre Result 80
Table 5.3.1.2.18 Table of Section C Post Result 80
Table 5.3.1.2.19 Table of Section D 80
Table 5.3.1.2.20 Table of Section D Word 81
Table 5.3.1.2.21 Table of Section D Pre Result 81
Table 5.3.1.2.22 Table of Section D Post Result 82
Table 5.3.1.2.23 Table of Section E 82
Table 5.3.1.2.24 Table of Section E Sentence 82
Table 5.3.1.2.25 Table of Section E Pre Result 83
Table 5.3.1.2.26 Table of Section E Post Result 83
Table 5.3.1.2.27 Table of Section F 84
Table 5.3.1.2.28 Table of Section F Picture 84
Table 5.3.1.2.29 Table of Section F Pre Result 84
Table 5.3.1.2.30 Table of Section F Post Result 85
Table 5.3.1.2.31 Table of Assessment Findings 85
Table 6.1.1 The Software Tools for Development 89
Table 6.2.1 Naming convention for DAS system 91
Chapter 1 Introduction

1.1 Project Definition

DAS (Dyslexia Assessment System) is a system which is used to assess the dyslexia among the children through the assessment. The assessment is written by an expert from Persatuan Dyslexia Malaysia. It will reduce the teacher workload while carrying out that particular assessment to assess the dyslexia among children.

1.2 Project Team

This project consists of 3 team members. The development of DAS will be divided among the team members. The system is decomposed into 3 subsystems which are Beginner, Intermediate and Advanced Level.

The table below shows the work breakdown of the 3 subsystems.

<table>
<thead>
<tr>
<th>Metric Number</th>
<th>Name</th>
<th>System Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEK060034</td>
<td>Kong Seng Kean</td>
<td>Beginner</td>
</tr>
<tr>
<td>WEK060036</td>
<td>Lean Zhen Whei</td>
<td>Intermediate</td>
</tr>
<tr>
<td>WEK060051</td>
<td>Mervin Sho Huan Chun</td>
<td>Advanced</td>
</tr>
</tbody>
</table>

Table 1.2 Project Team Work Breakdown
1.3 Problem Statement

Nowadays, there are various methods for detecting the dyslexia among children in the market. For example, Functional Magnetic Resonance Imaging (fMRI). It is very expensive and required expertise for using this method to detect. Even though the accuracy of detection is very high but not everyone afford to pay for it. Besides, there is no proper system to detect dyslexia in Malay. In addition, the current detection in Malay is in manual mode. So, it is slower compared to system. As a result, we decided to develop DAS.

1.4 Project Objective

The objective of this project is to develop a computer-aided system to assess dyslexia among children. Secondly, we would like to conduct an empirical study on the effectiveness of teaching at Persatuan Dyslexia Malaysia by analyzing the pre and post assessment result of student.

1.5 Development Methodology

In the Development Methodology, the Software Development Model that we choose is Spiral Model. As for the Software Development Technique, we chose Prototyping. The reason why the Spiral Model and prototyping are chosen is because that the properties of our future system are rather “visionary”. Many of the requirements are not being explained clearly by our client at the early stage of development. By using this model, our system can be modified to adapt their requirement changes. By June, we will have to at least come out with a prototype system to gather our test data from our test subjects who are students from Persatuan Dyslexia Malaysia. In each stage, the objectives of that stages will be identified, options and constraints will be listed, risks in choosing between different options are considered and lastly plan to proceed to next stage is determined. The prototype built will eventually evolves into our final system.
1.6 Project Scope

The user system is consisting of children and administration staff. Children will be the test subjects who actually use the system to determine whether they are dyslexic in anyway. The children will be divided into different classes of user which are the beginner level, intermediate level and lastly the advanced level. Each class of user will contained different set of assessment test. As for the administrator, they can access the system at admin level which authorizes them to add, modified and delete questions in the system.

1.7 Project Outcome

The final outcome of this project is a computer-aided system to achieve the followings:

- Assess dyslexia among children at beginner, intermediate and advanced levels using detection established by the expert from the Persatuan Dyslexia Wilayah Persekutuan (PDWP).
- Generate report of the detection results for parents as well as for the use of PDWP.

1.8 Project Schedule

Project schedule is “the project timeline, identifying the dates (absolute or relative to a start date) that project tasks will be started or completed, resources will be required and upon which milestones will be reached.” [visitask.com – Schedule 2006]

To make our project a successful one, a project schedule has been planned to manage the time and activities needed to accomplish the project. The activities are displayed in the Gantt Chart below:
1.9 Chapter Summary

In this chapter, it describes the project definition of the DAS system. It also describes the problem statement as well as the objectives of the project that we’re going to achieve. Besides that, it also includes the project scope and the methodologies that we’re going to use in developing this system. The team members that involve in this project are also included together with their names and work breakdown. In the last section of this chapter, the project expected outcome of the DAS and the schedule are also described. The schedule will include the start and end date of each activities involve in this project.