ABSORPTION AND IN VIVO EFFECTS OF ANTIOXIDANTS FROM MULBERRY (MORUS ALBA L.) LEAF EXTRACTS IN RATS

LEE CHOOI YENG

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF MEDICINE
UNIVERSITY OF MALAYA
KUALA LUMPUR

MAY 2008
This study was carried out to show the systemic absorption, possible mechanism of absorption, and in vivo effects of the antioxidants in the mulberry leaf extracts. We have used five animal models to achieve these objectives.

In this study, a convenient and simple in situ rat model has been optimised, that is useful for quick assessment of antioxidant absorption (Nutr. Res. 2007; see List of Publications). By using several plant extracts (mushroom, mulberry, rambutan, dragon fruit, mangosteen and cempedak), differential total antioxidant activity (TAA) absorption profiles were demonstrated with the different plants.

The in situ rat intestinal model showed that aqueous extract of mulberry leaves (15 g%) was absorbed from the ileum, but not from the duodenum and jejunum. Absorption of the ethanolic antioxidants in the mulberry leaves (1.5 g%) was detected at the duodenum for most of the 3 h monitoring period, and to a lesser extent at the jejunum and ileum. The absorption seemed to occur by passive diffusion.

Using an in vitro everted ileum preparation, absorption of mulberry leaf aqueous extract was carried out in different buffers. There was no absorption with extract in the glucose-free incubation medium. Absorption of antioxidants in the aqueous extract was seen when glucose and sodium salt were present, and in both the sodium-free and fructose-containing incubation buffers. These findings suggest that absorption at the ileum is mediated by monosaccharide-associated transporters. However, measurement of the absorption of antioxidants in the ethanol extract was affected by a spontaneously release of intestinal endogenous antioxidants into the incubation medium. The rates of absorption from both the in vitro everted duodenum and jejunum were comparable. The absorption rate was highest at the ileum. The flux of natural antioxidants has also affected absorption measurement in the in vitro non-everted gut sac model.
In the *in vitro* non-everted gut sac model, mulberry leaf aqueous extract was not absorbed from any part of the intestine. Absorption of the added antioxidants has to exceed that of the spontaneous antioxidant level for detection to be possible. With ethanolic mulberry extract, only absorption from the ileum was detected.

In the study on absorption of single compounds using the *in situ* model, rutin (glycosylated quercetin, 13.5 µg/ml), prepared at a similar concentration to that found in the mulberry leaf ethanol extract (1.5 g%), was only absorbed from the duodenum. Isoquercitrin (10.5 µg/ml), another major compound in the ethanol extract (1.5 g%), was not absorbed from any part of the intestine. Because absorption of the ethanolic mulberry extract occurred throughout the small intestine, these data suggest that absorption of single compounds is not any greater than absorption of a complex mixture of compounds. Consumption of a whole extract or whole food rich in antioxidants may give more benefits than a purified compound.

When a higher dose of rutin was instilled into the duodenal segment (2 mg) in the *in situ* intestinal model, a microbial metabolite of rutin, 3-hydroxyphenylacetic acid, was detected in the plasma. Quercetin was not found. The presence of this microbial metabolite in the plasma has not been reported previously. This suggests that microbial metabolite is a main contributor to the increase of plasma TAA after consumption of mulberry leaf extract.

In the oral feeding study, the mulberry leaf ethanol extract and pure rutin were separately shown to be absorbed from the intestine. Although there was no increase of plasma TAA after 14 days of treatment as compared to the control animals, the urine ascorbic acid equivalent of the treated animal was higher than the control. Another microbial metabolite, phenylacetic acid, was detected in the urine of days 7, 13 and 14.

In order to demonstrate tissue bioavailability, rats were first stressed by immobilisation to induce inflammation and to generate reactive oxygen species in the
target organs. Tissue bioavailability of ethanolic antioxidants in the mulberry leaves (containing about 135 µg rutin) and rutin (2 mg) were reflected in their ability to protect the stressed tissues from potential damage. The untreated stressed rats showed hypertrofies in the adrenal glands and kidneys, increased levels of nitrite and thiobarbituric acid reactive substances (TBARS) in the plasma and target tissue homogenates. Mulberry leaf ethanol extract and rutin attenuated these increases. The stress defence mechanism by mulberry extract was most dramatically seen in the adrenal glands. An increase of TAA level, which indicates absorption, was found in the adrenal homogenate. Adrenal gland is the target tissue of antioxidants in the mulberry leaf ethanol extract.

This study shows that antioxidants in the mulberry leaf ethanol extract were adequately absorbed from the intestine. Some of the dietary antioxidants can be metabolised into microbial metabolites and absorbed into the blood circulation. These metabolites retained high antioxidant activity and can reduce lesions in the target organs caused by stress.

In the course of experimentation with the *in vitro* intestinal preparations, a unique and serendipitous observation was made. There was a consistent and spontaneous release of antioxidants from the intestinal preparations into the incubation buffer. The spontaneous release of endogenous antioxidants may be associated with P-glycoprotein and multidrug resistance protein 2 (MRP2). The natural intestinal release of endogenous antioxidants could represent a normal physiological response to external stresses and pro-oxidants in consumed foods. In light of this, dietary antioxidants, even if they are not efficiently absorbed, can also contribute to the intra-luminal antioxidant protection.
ACKNOWLEDGEMENTS

I wish to extend my sincere gratitude to Prof. Cheng Hwee Ming, the principal investigator of this study, for introducing me to this interesting field, and for his supervision and advices throughout the study. I appreciate guidance from co-supervisor Prof. Debra Sim Si Mui in animal experimentation and data analysis. I’m grateful to Prof. Kayoko Shimo from the University of Shizuoka, Japan, for giving constructive comments and good advice on the study. Lastly, I need to convey my utmost appreciation to my family and friends for their understanding and being very supportive during this study.
DECLARATION

I hereby declare that the work presented in this thesis is original, except for citations which have been duly acknowledged. This thesis has not been, and will not be submitted for a degree at other university.

LEE CHOOI YENG
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Free Radicals
1.2 Reactions of Free Radicals
1.3 Antioxidant Defences
1.4 Oxidative Stress, Human Diseases and Aging
1.5 Dietary Antioxidants
 1.5.1 Sources and beneficial effects of dietary antioxidants
 1.5.2 Mulberry plant (*Morus alba* L.)
1.6 Gastrointestinal Absorption
 1.6.1 Passive diffusion across cell membrane
 1.6.2 Carrier-mediated cell membrane transport
 1.6.3 Absorption of flavonol: quercetin
1.7 Absorption and Bioavailability

1.7.1 Bioavailability of quercetin glycosides

1.7.2 Antioxidant property of the quercetin metabolites

1.7.3 Tissue uptake of quercetin

1.8 The Objectives and The Design of This Study

CHAPTER 2 MATERIALS AND METHODS

2.1 Animals and Chemicals

2.2 Collection of Plant Samples

2.3 Preparation of Plant Extracts

2.4 In vitro Antioxidant Screening Assays

2.4.1 Total antioxidant activity (TAA) of plant extracts

2.4.2 Total phenol assay

2.5 In situ Intestinal Preparation for Absorption Study

2.5.1 Extraction of mulberry leaves

2.5.2 Experimental design

2.5.3 Surgical procedures and blood sampling

2.5.4 Analysis of the plasma antioxidant level

2.5.5 In situ absorption study of other samples

2.5.6 HPLC analysis of the plasma samples

2.5.6.a Plasma samples pre-treatment process

2.5.6.b HPLC assay for quercetin in plasma

2.5.6.c Relative recovery of quercetin in HPLC analysis

2.6 In vitro Everted Gut Sac Preparation for Absorption Study

2.6.1 Experimental design

2.6.2 Surgical procedures and sampling of the mucosal fluid
2.6.3 TAA of the mucosal fluid

2.7 \textit{In vitro} Non-Everted Gut Sac Preparation for Absorption Study

2.7.1 Experimental design

2.7.2 Experimental procedures and sampling of the serosal fluid

2.7.3 Statistical analysis

2.7.4 HPLC analysis of the serosal fluid collected from the non-everted gut sac containing mulberry leaf ethanol extract or rutin

\hspace{1cm} 2.7.4.a Serosal fluid pre-treatment process

\hspace{1cm} 2.7.4.b HPLC system to detect quercetin in the serosal fluid

\hspace{1cm} 2.7.4.c Relative recovery of quercetin in HPLC analysis

2.7.5 Studies on compounds that were released spontaneously from the non-everted gut sac

\hspace{1cm} 2.7.5.a HPLC analysis

\hspace{1cm} 2.7.5.b The release of the endogenous intestinal antioxidants

2.8 Oral Feeding Study

2.8.1 Experimental design

2.8.2 Experimental procedures and collection of plasma, urine and faecal samples

2.8.3 Sample preparation for AEAC assay

2.8.4 HPLC analysis for plasma, urine and faecal samples

\hspace{1cm} 2.8.4.a Urine pre-treatment process

\hspace{1cm} 2.8.4.b HPLC assay for quercetin in urine

\hspace{1cm} 2.8.4.c Relative recovery of quercetin in HPLC analysis

\hspace{1cm} 2.8.4.d HPLC assays for quercetin and its microbial metabolites in faeces

2.9 Experiments To Show Tissue Bioavailability

2.9.1 Experimental design
2.9.2 Experimental procedures and sampling of plasma and rat organs 54
2.9.3 Organ weight/body weight ratio 54
2.9.4 Griess assay for measurement of nitrite in the plasma and tissues 55
2.9.5 Lipid peroxidation - TBARS measurement 56
2.9.6 AEAC assay 57
2.9.7 Statistical analysis 57

CHAPTER 3 RESULTS

3.1 In vitro Screening of Plant Samples for Total Antioxidant Activity (TAA) 58
 3.1.1 Ascorbic acid Equivalent Antioxidant Capacity (AEAC) assay 58
 3.1.2 Diphenyl-picryl-hydrazyl (DPPH) assay 59
 3.1.3 Galvinoxyl Free Radical Quenching (GFRQ) assay 60
 3.1.4 Total phenol assay 61

3.2 Absorption Study using an In situ Rat Intestinal Preparation 62
 3.2.1 Absorption of antioxidants in the mulberry leaf aqueous extract (15 g%) 62
 3.2.2 Absorption of antioxidants in the mulberry leaf ethanol extract (1.5 g%) 64
 3.2.3 Absorption of rutin (13.5 µg/ml) dissolved in 10% ethanol 66
 3.2.4 Absorption of isoquercitrin (10.5 µg/ml) dissolved in 10% ethanol 68
 3.2.5 HPLC on the plasma samples from in situ absorption experiments 70
 3.2.6 In situ Intestinal Preparation to Screen for Absorption of Antioxidants in Several Plant Samples 72

3.3 In vitro Absorption Study using an Everted Gut Sac Preparation 78
 3.3.1 Absorption of antioxidants in the mulberry leaf aqueous extract (1.5 g%) in glucose-free medium 78
3.3.2 Absorption of antioxidants in the mulberry leaf aqueous extract (1.5 g%) in glucose-containing medium 80

3.3.3 Absorption of antioxidants in the mulberry leaf aqueous extract (1.5 g%) in sodium-free medium 82

3.3.4 Absorption of antioxidants in the mulberry leaf aqueous extract (1.5 g%) in fructose-containing medium 84

3.3.5 Absorption of antioxidants in the mulberry leaf ethanol extract (1.5 g%) in glucose-free medium 87

3.4 *In vitro* Absorption Study using a Non-Everted Gut Sac Preparation 89

3.4.1 Absorption of antioxidants in the mulberry leaf aqueous extract (1.5 g%) 89

3.4.2 Absorption of antioxidants in the mulberry leaf ethanol extract (1.5 g%) 91

3.4.3 Absorption of rutin (13.5 µg/ml) in 10% ethanol 93

3.4.4 HPLC analysis on the serosal fluid from non-everted intestinal preparation 95

3.4.4.a HPLC profiles of the duodenal serosal fluid 96

3.4.4.b HPLC profiles of the jejunal serosal fluid 96

3.4.4.c HPLC profiles of the ileal serosal fluid 97

3.4.4.d Quantification of quercetin in the ileal serosal fluid 100

3.4.5 Studies on the endogenous antioxidants that were released spontaneously from the non-everted gut sac 101

3.4.5.a Detection of an unknown compound in the serosal fluid 101

3.4.5.b The release of the unknown compound 102

3.5 Oral Feeding Study with Mulberry Leaf Ethanol Extract and Rutin 105

3.5.1 Plasma samples from rats 105

3.5.1.a HPLC analysis on the plasma samples 106

3.5.2 Urine samples from rats 106

3.5.2.a HPLC analysis of the urine samples 108

3.5.2.b TAA of quercetin, rutin and their metabolite 113
3.5.3 Faecal samples from rats
 3.5.3.a HPLC to detect quercetin microbial metabolites
 3.5.3.b HPLC to detect quercetin

3.5.4 Summary of antioxidant absorption studies

3.6 Immobilisation Stress-Induced Study
 3.6.1 Organ-to-body weight ratio
 3.6.2 Griess assay - nitrite (NO$_2^-$) measurement
 3.6.3 Thiobarbituric Acid Reactive Substances (TBARS) measurement
 3.6.4 Total antioxidant activity (TAA) in the plasma and tissues

CHAPTER 4 DISCUSSION
 4.1 In vitro Screening of Plant Samples for Total Antioxidant Activity (TAA)
 4.2 In situ Rat Intestinal Preparation for Antioxidant Absorption Study
 4.3 In vitro Everted Gut Sac Model for Absorption of Antioxidants
 4.4 In vitro Non-Everted Gut Sac Model for Absorption of Antioxidants
 4.5 The Spontaneous Release of Gut Antioxidants
 4.6 The Oral Feeding Study with Mulberry Leaf Ethanol Extract and Rutin
 4.7 The Immobilisation Stress-Induced Study and Effects of Supplementation with Mulberry Leaf Ethanol Extract or Rutin

SUMMARY

REFERENCES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Reaction between peroxynitrite and carbon dioxide produces free radicals</td>
</tr>
<tr>
<td>1.2</td>
<td>Chain reactions of lipid peroxidation</td>
</tr>
<tr>
<td>1.3</td>
<td>Haber-Weiss reaction: generation of hydroxyl radical from superoxide in the presence of iron</td>
</tr>
<tr>
<td>1.4</td>
<td>Mechanism of protein oxidation and degradation. P: protein; P<sub>ox</sub>: oxidised protein. Symbols + and – indicate stimulation and inhibition, respectively</td>
</tr>
<tr>
<td>1.5</td>
<td>Radical scavenging activity of manganese porphyrins</td>
</tr>
<tr>
<td>1.6</td>
<td>Chemical structures of the main classes of flavonoids</td>
</tr>
<tr>
<td>1.7</td>
<td>Chemical structures of A) rutin; B) isoquercitrin; C) quercetin 3-(6-malonylglucoside)</td>
</tr>
<tr>
<td>1.8</td>
<td>Mulberry plant: A) mulberry leaves; B) mulberry fruits; C) mulberry flowers</td>
</tr>
<tr>
<td>1.9</td>
<td>Chemical structure of quercetin aglycone</td>
</tr>
<tr>
<td>1.10</td>
<td>Possible absorption mechanisms of quercetin glycosides in the small intestine. Q3G: guerceptin 3-glucoside (isoquercitrin); SGLT-1: sodium-dependent glucose transporter-1; LPH: lactase phlorizin hydrolase; UDPGT: uridine-diphospho-glucose glucuronosyltransferase; Q3GA: quercetin 3-glucuronide</td>
</tr>
<tr>
<td>1.11</td>
<td>Chemical structure of quercetin 3-glucuronide (Q3GA)</td>
</tr>
<tr>
<td>1.12</td>
<td>Design and rationale of the experiments in this study</td>
</tr>
<tr>
<td>2.1</td>
<td>In situ intestinal rat model: flushing the isolated intestine, and instillation of the vehicle or plant extract into the intestinal segment</td>
</tr>
<tr>
<td>2.2</td>
<td>The in vitro everted gut sac model. X<sub>1</sub>: water or 10% ethanol; X<sub>2</sub>: plant extract</td>
</tr>
<tr>
<td>2.3</td>
<td>The in vitro non-everted gut sac model</td>
</tr>
</tbody>
</table>
2.4 Experimental procedures in the immobilisation stress-induced rat model to demonstrate tissue bioavailability of antioxidants in the mulberry leaf ethanol extract and rutin

3.1 Plasma TAA profiles following instillation of water or aqueous extract of mulberry leaves into the (a) duodenum, (b) jejunum and (c) ileum of rats. Values are mean ± SD of n = 5 for each segment. ** P < 0.01, compared with the control group by t-test

3.2 Plasma TAA profiles following instillation of 10% ethanol control or ethanol extract of mulberry leaves into the (a) duodenum, (b) jejunum and (c) ileum of rats. Values are mean ± SD of n = 5 for each segment. * P < 0.05, ** P < 0.01, *** P < 0.001, compared with the control group by t-test

3.3 Plasma TAA profiles following administration of 10% ethanol control or rutin (13.5 µg/ml) at the (a) duodenum, (b) jejunum and (c) ileum of rats. Values are mean ± SD of n = 5 for each segment. ** P < 0.01, compared with the control group by t-test

3.4 Plasma TAA profiles following administration of 10% ethanol control or rutin (4 mg/ml) at the duodenum of rats. Values are mean ± SD of n = 5. * P < 0.05, compared with the control group by t-test

3.5 Plasma TAA profiles following administration of 10% ethanol control or isoquercitrin (10.5 µg/ml) at the (a) duodenum, (b) jejunum and (c) ileum of rats. Values are mean ± SD of n = 5 for each segment

3.6 The retention times of standards: 3-OH-phenylacetic acid (2.6 min) and quercetin (11 min). Fisetin was the internal standard

3.7 Representative HPLC profiles of plasma obtained at 180 min from a control rat (a), and rats given the ethanol extract (1.5 g%) (b), or rutin (13.5 µg/ml) (c) at the duodenum. Fisetin was the internal standard

3.8 HPLC profile of plasma samples collected at 180 min after introduction of rutin (4 mg/ml) into the duodenum. Microbial metabolite of rutin, 3-OH-phenylactic acid, was detected

3.9 Plasma TAA profiles following instillation of the mushroom (a) aqueous or (b) ethanol extract into the ileum. Data are expressed as mean ± SD (n = 5 for each extract). * P < 0.05, compared with the control group by t-test

3.10 Plasma TAA profiles following instillation of the rambutan skin (a) aqueous or (b) ethanol extract into the ileum. Data are expressed as mean ± SD (n = 5 for each extract). * P < 0.05, compared with the control group by t-test
3.11 Plasma TAA profiles following instillation of the dragon fruit skin (a) aqueous or (b) ethanol extract into the ileum. Data are expressed as mean ± SD (n = 5 for each extract). * P < 0.05, compared with the control group by t-test

3.12 Plasma TAA profiles following instillation of the mangosteen leaf (a) aqueous or (b) ethanol extract into the ileum. Data are expressed as mean ± SD (n = 5 for each extract). * P < 0.05, ** P < 0.01, compared with the control group by t-test

3.13 Plasma TAA profiles following instillation of the cempedak leaf (a) aqueous or (b) ethanol extract into the ileum. Data are expressed as mean ± SD (n = 5 for each extract). * P < 0.05, ** P < 0.01, compared with the control group by t-test

3.14 Time profiles of the TAA remaining in the mucosal fluid following incubation of the everted duodenal, jejunal and ileal segments with mulberry leaf aqueous extract in different composition of the incubation medium: (a) glucose-free medium, (b) glucose-containing medium, (c) sodium-free medium and (d) fructose-containing medium

3.15 Time profiles of the TAA remaining in the mucosal fluid following incubation of the everted duodenal, jejunal and ileal segments with mulberry leaf ethanol extract in glucose-free medium

3.16 Time profiles of the TAA in the serosal fluid following incubation of the non-everted (a) duodenal, (b) jejunal and (c) ileal segments that contained the mulberry leaf aqueous extract in the mucosal side. Values are mean ± SD of n = 5 for each segment

3.17 Time profiles of the TAA in the serosal fluid following incubation of the non-everted (a) duodenal, (b) jejunal and (c) ileal segments that contained the mulberry leaf ethanol extract in the mucosal side. Values are mean ± SD of n = 5 for each segment. * P < 0.05, ** P < 0.01, compared with the control group by t-test

3.18 Time profiles of the TAA in the serosal fluid following incubation of the non-everted (a) duodenal, (b) jejunal and (c) ileal segments that contained rutin in the mucosal side. Values are mean ± SD of n = 5 for each segment. * P < 0.05, ** P < 0.01, compared with the control group by t-test

3.19 A typical chromatogram showing the retention times for rutin (2.7 min), isoquercitrin (3.7 min), fisetin (7 min) and quercetin (16 min) standards

3.20 Representative chromatogram of the incubation medium (serosal fluid) at 0 min. I.S. = internal standard
3.21 Representative chromatogram of the serosal fluid bathing the control non-everted duodenal segment, taken at (a) 5 and (b) 30 min. I.S. = internal standard

3.22 Representative chromatogram of the serosal fluid bathing the control non-everted jejunal segment, taken at (a) 5 and (b) 30 min. I.S. = internal standard

3.23 Representative chromatogram of the serosal fluid bathing the control non-everted ileal segment, taken at (a) 5 and (b) 30 min. I.S. = internal standard

3.24 Chromatogram of the serosal fluid bathing the non-everted ileal segment containing mulberry leaf ethanol extract in the mucosal side, taken at (a) 5, (b) 10, (c) 20 and (d) 30 min. I.S. = internal standard

3.25 Chromatogram of the serosal fluid bathing the non-everted ileal segment containing rutin in the mucosal side, taken at (a) 5, (b) 10, (c) 20 and (d) 30 min. I.S. = internal standard

3.26 The amount of quercetin (after hydrolysis) appearing at different time in the serosal fluid (pooled 250 µl samples) that bathed the non-everted ileal gut sac containing the mulberry leaf ethanol extract (1.5 g%) or rutin (13.5 µg/ml) in the mucosal side

3.27 Chromatogram showing the unknown peak (compound X) in the serosal fluid. The peak increased with incubation time: A. 0, B. 10, C. 20, D. 30, E. 40, F. 50 and G. 60 min

3.28 Effects of acetylcholine, atropine and histamine on the spontaneous release of antioxidants from the non-everted duodenal gut sac (n = 1 for each experiment)

3.29 Effects of norepinephrine, phentolamine and propranolol on the spontaneous release of antioxidants from the non-everted duodenal gut sac (n = 1 for each experiment)

3.30 Effects of verapamil, deoxycholic acid and digoxin on the spontaneous release of antioxidants from the non-everted duodenal gut sac (n = 1 for each experiment)

3.31 Effects of a) low temperature, and b) oxygen deprivation on the spontaneous release of antioxidants from the non-everted duodenal gut sac. Values are mean ± SD of n = 3. * P < 0.05, compared with the control group by t-test

3.32 Time profiles of plasma TAA of the control, ethanol extract- and rutin-fed rats. Data are given as mean ± SD, n = 6

3.33 Representative chromatogram of plasma samples taken on day 14 from control rats. Fisetin was used as the internal standard
3.34 Individual urine profiles of the (a) control rats, and rats fed with (b) mulberry leaf ethanol extract or (c) rutin (n = 6 for each group) 107

3.35 The retention times of 3-OH-phenylacetic acid (3.0 min), phenylacetic acid (7.3 min) and quercetin (16.6 min) standards 108

3.36 Representative chromatogram of the control rat on day 0 109

3.37 Representative chromatogram of the rat fed with mulberry leaf ethanol extract on day 0 109

3.38 Representative chromatogram of the rat fed with rutin on day 0 109

3.39 Representative chromatogram of the control rat on day 7 110

3.40 Representative chromatogram of metabolite(s) present in the urine of the rat fed with mulberry leaf ethanol extract on day 7 110

3.41 Representative chromatogram of metabolite(s) present in the urine of the rat fed with rutin on day 7 110

3.42 Representative chromatogram of the control rat on day 13 111

3.43 Representative chromatogram of metabolite(s) present in the urine of the rat fed with mulberry leaf ethanol extract on day 13 111

3.44 Representative chromatogram of metabolite(s) present in the urine of the rat fed with rutin on day 13 111

3.45 Representative chromatogram of the control rat on day 14 112

3.46 Representative chromatogram of metabolite(s) present in the urine of the rat fed with mulberry leaf ethanol extract on day 14 112

3.47 Representative chromatogram of metabolite(s) present in the urine of the rat fed with rutin on day 14 112

3.48 TAA of the faecal samples taken from the control, ethanol extract- and rutin-fed rats on day 0 and day 14. *** P < 0.001, compared with the corresponding control group by t-test 113

3.49 Representative chromatogram of the faeces of the control rat on (a) day 0 and (b) day 14 using 20:7:73 acetonitrile:methanol: acidified water (pH 3.0) as mobile phase 114

3.50 Representative chromatogram of metabolite(s) present in the faeces of the rat fed with mulberry leaf ethanol extract on (a) day 0 and (b) day 14 using 20:7:73 acetonitrile:methanol:acidified water (pH 3.0) as mobile phase 115
3.51 Representative chromatogram of metabolite(s) present in the faeces of the rat fed with rutin on (a) day 0 and (b) day 14 using 20:7:73 acetonitrile:methanol:acidified water (pH 3.0) as mobile phase

3.52 A typical chromatogram showing the retention times of fisetin (5 min) and quercetin (10 min) standards

3.53 Representative chromatogram of the faeces of the control rat on (a) day 0 and (b) day 14 using 25:75 acetonitrile:acidified water (pH 3.0) as mobile phase

3.54 Representative chromatogram of quercetin present in the faeces of the rat fed with mulberry leaf ethanol extract on (a) day 0 and (b) day 14 using 25:75 acetonitrile:acidified water (pH 3.0) as mobile phase

3.55 Representative chromatogram of quercetin present in the faeces of the rat fed with rutin on (a) day 0 and (b) day 14 using 25:75 acetonitrile:acidified water (pH 3.0) as mobile phase

3.56 Nitrite levels in rat plasma and tissue homogenates. Data are expressed as mean ± SD of five experiments. * P < 0.05, *** P < 0.001 (vs. control); ## P < 0.01, ### P < 0.001 (vs. ImEt); † P < 0.05 (ImML vs. ImRt) by one-way ANOVA, followed by post hoc Tukey-Kramer test

3.57 Thiobarbituric acid reactive substances (TBARS) measured in rat plasma and tissue homogenates. Data are expressed as mean ± SD of five experiments. * P < 0.05, ** P < 0.01, *** P < 0.001 (vs. control); # P < 0.05, ## P < 0.01, ### P < 0.001 (vs. ImEt) by one-way ANOVA, followed by post hoc Tukey-Kramer test

3.58 Total antioxidant activity (TAA) in rat plasma and tissue homogenates. Data are expressed as mean ± SD of five experiments. * P < 0.05, *** P < 0.001 (vs. control); ## P < 0.01, ### P < 0.001 (vs. ImEt); †† P < 0.01, ††† P < 0.001 (ImML vs. ImRt) by one-way ANOVA, followed by post hoc Tukey-Kramer test

4.1 The in vitro everted gut sac model. Absorption is determined by the decrease of TAA in the incubation medium

4.2 The in vitro non-everted gut sac model. Absorption is determined by the increase of TAA in the incubation medium

4.3 The spontaneous release of endogenous antioxidants from the in vitro everted and non-everted gut sacs
4.4 Absorption of antioxidants from the mulberry leaf extract and the release of intestinal (Int) endogenous antioxidants into the incubation buffer from the (A) everted gut sac and (B) non-everted gut sac

4.5 The TAA measured from the control non-everted duodenum, jejunum and ileum (n = 5 for each segment)

4.6 The TAA measured from the control non-everted duodenum (n = 5), the stomach, colon and urinary bladder (n = 1 for each organ)

4.7 The proposed metabolic pathways of rutin and/or quercetin. The 3-hydroxyphenylacetic acid (boxed in red), a major microbial metabolite of quercetin, was detected in the plasma in this study

4.8 Proposed mechanisms of the immobilisation stress-induced inflammation and elevated nitric oxide (NO) in adrenals. 1. Pituitary signal; 2. Hypothalamus signal; 3. ROS signal. ROS: reactive oxygen species

4.9 Effect of mulberry leaf ethanol extract on immobilisation stress-induced hypertrophy, tissue nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and total antioxidant activity (TAA). ↑ (increased), ↓ (decreased), ↔ (no change) compared to the control
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 The dosage regimen in the oral feeding study</td>
<td>50</td>
</tr>
<tr>
<td>3.1 Ascorbic acid equivalent in the plant extracts using the AEAC assay</td>
<td>58</td>
</tr>
<tr>
<td>3.2 Ascorbic acid equivalent in the plant extracts using the DPPH assay</td>
<td>59</td>
</tr>
<tr>
<td>3.3 Ascorbic acid equivalent in the plant extracts using the GFRQ assay</td>
<td>60</td>
</tr>
<tr>
<td>3.4 Gallic acid equivalent (GAE) in the plant extracts using the total phenol assay</td>
<td>61</td>
</tr>
<tr>
<td>3.5 TAA remaining in the mucosal fluid following incubation of the everted duodenal segments with mulberry leaf aqueous extract in glucose-free medium</td>
<td>79</td>
</tr>
<tr>
<td>3.6 TAA remaining in the mucosal fluid following incubation of the everted jejunal segments with mulberry leaf aqueous extract in glucose-free medium</td>
<td>79</td>
</tr>
<tr>
<td>3.7 TAA remaining in the mucosal fluid following incubation of the everted ileal segments with mulberry leaf aqueous extract in glucose-free medium</td>
<td>79</td>
</tr>
<tr>
<td>3.8 TAA remaining in the mucosal fluid following incubation of the everted duodenal segments with mulberry leaf aqueous extract in glucose-containing medium</td>
<td>81</td>
</tr>
<tr>
<td>3.9 TAA remaining in the mucosal fluid following incubation of the everted jejunal segments with mulberry leaf aqueous extract in glucose-containing medium</td>
<td>81</td>
</tr>
<tr>
<td>3.10 TAA remaining in the mucosal fluid following incubation of the everted ileal segments with mulberry leaf aqueous extract in glucose-containing medium</td>
<td>81</td>
</tr>
<tr>
<td>3.11 TAA remaining in the mucosal fluid following incubation of the everted duodenal segments with mulberry leaf aqueous extract in sodium-free medium</td>
<td>83</td>
</tr>
<tr>
<td>3.12 TAA remaining in the mucosal fluid following incubation of the everted jejunal segments with mulberry leaf aqueous extract in sodium-free medium</td>
<td>83</td>
</tr>
</tbody>
</table>
3.13 TAA remaining in the mucosal fluid following incubation of the everted ileal segments with mulberry leaf aqueous extract in sodium-free medium

3.14 TAA remaining in the mucosal fluid following incubation of the everted duodenal segments with mulberry leaf aqueous extract in fructose-containing medium

3.15 TAA remaining in the mucosal fluid following incubation of the everted jejunal segments with mulberry leaf aqueous extract in fructose-containing medium

3.16 TAA remaining in the mucosal fluid following incubation of the everted ileal segments with mulberry leaf aqueous extract in fructose-containing medium

3.17 TAA remaining in the mucosal fluid following incubation of the everted duodenal segments with mulberry leaf ethanol extract in glucose-free medium

3.18 TAA remaining in the mucosal fluid following incubation of the everted jejunal segments with mulberry leaf ethanol extract in glucose-free medium

3.19 TAA remaining in the mucosal fluid following incubation of the everted ileal segments with mulberry leaf ethanol extract in glucose-free medium

3.20 Summary of antioxidant absorption studies from the use of several animal models

3.21 Organ-to-body weight ratios of the control, ImEt, ImML and ImRt rats

4.1 Other in situ intestinal preparations available for absorption study
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEAC</td>
<td>Ascorbic acid equivalent antioxidant capacity</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>GLUT</td>
<td>Glucose-dependent transporter</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>LDL</td>
<td>Low density lipoprotein</td>
</tr>
<tr>
<td>LPH</td>
<td>Lactase phlorizin hydrolase</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>Q3G</td>
<td>Quercetin 3-glucoside</td>
</tr>
<tr>
<td>Q3GA</td>
<td>Quercetin 3-glucuronide</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SGLT</td>
<td>Sodium-dependent glucose transporter</td>
</tr>
<tr>
<td>TAA</td>
<td>Total antioxidant activity</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric acid reactive substances</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>182</td>
</tr>
<tr>
<td>Flavonoid Subclasses, Their Prominent Food Flavonoids and Typical Food Sources</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>183</td>
</tr>
<tr>
<td>Rat Feed Composition</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>184</td>
</tr>
<tr>
<td>Calibration Curves for AEAC, DPPH, GFRQ and Total Phenol Assays</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>186</td>
</tr>
<tr>
<td>Calibration Curve for Quercetin in the Serosal Fluid (n = 4)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>187</td>
</tr>
<tr>
<td>Calibration Curves for Nitrite and TBARS (n = 4 per analysis)</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>188</td>
</tr>
<tr>
<td>In situ Intestinal Absorption Study</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>200</td>
</tr>
<tr>
<td>In vitro Non-Everted Gut Sac Absorption Study</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>204</td>
</tr>
<tr>
<td>Oral Feeding Study</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>206</td>
</tr>
<tr>
<td>Immobilisation Stress-Induced Study</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

Papers in International Peer Review

Abstracts in International Presentation
